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FreÂ edericksz transitions in smectic liquid crystals in annular
geometries

by P. J. BARRATT and B. R. DUFFY*
Department of Mathematics, University of Strathclyde, Livingstone Tower,

26 Richmond Street, Glasgow G1 1XH, UK

(Received 24 January 1997; accepted 16 May 1997)

This paper investigates the stability of simple static orientation patterns in a sample of smectic
liquid crystal con® ned to a cylindrical annulus, when a magnetic ® eld is applied. Four di� erent
arrangements are considered, covering cases where the layer normal is everywhere either
radial or axial, and the (orthogonal ) magnetic ® eld is either radial, azimuthal or axial. A
classi® cation is given of the threshold radii for mechanical instabilities, and of the threshold
magnetic ® elds for FreÂ edericksz transitions for these cases, with strong anchoring at the
boundaries.

1. Introduction azimuthal alignment would be unstable if the outer
radius were to exceed some critical value rc . In particularAs is well known, a FreÂ edericksz transition occurs in
they showed that, when there is weak anchoring on ata liquid crystal when, under an incrementally increasing
least one cylindrical boundary, rc depends on the saddle±applied magnetic or electric ® eld, a simple initial equilib-
splay elastic constant k24 as well as various anchoringrium orientation pattern in the material begins to change
coe� cients and other elastic constants. Barratt andto a more distorted pattern, at some critical value of
Du� y [5] extended their analysis to include the e� ectsthe applied ® eld. Theoretical studies of FreÂ edericksz
of magnetic ® elds: they presented a catalogue of thetransitions in nematic materials have been very successful
threshold ® elds Hc required to induce a FreÂ ederickszin providing means of verifying experimentally the con-
transition for all the six cases in which the (mutuallytinuum theory of Ericksen and Leslie [1] for these
orthogonal) magnetic ® eld and initial director ® eld arematerials, and of measuring the elastic constants that
either radial, azimuthal or axial.occur in that theory. In particular there has over the

The success of studies of nematics in annular geo-past three decades been a variety of studies concerning
metries has motivated work on analogous problems fororientation patterns in nematic samples con® ned to a
smectic C materials. Atkin and Stewart [6], using thecylindrical annulus. For example, the early analyses
continuum theory for smectics recently formulated byof Leslie [2] and Atkin and Barratt [3] concerned,
Leslie et al. [7], considered the case in which therespectively, the case in which the material is initially
smectic layers form circular cylinders concentric with thealigned azimuthally with the magnetic ® eld applied in a
boundaries, with the initial director orientation every-radial direction, and the case in which the initial align-
where lying in the radial± axial plane and with thement is axial and the applied magnetic ® eld is either
magnetic ® eld applied azimuthally. They presented aradial or azimuthal. For these set-ups, on the assumption
non-linear study based on static theory, and showedof strong anchoring at the boundaries, critical magnetic
that a more distorted state becomes energetically more® elds at which FreÂ edericksz transitions occur were
favourable than the initial alignment when the ® elddetermined in terms of the elastic constants k11, k22
exceeds a critical value Hc. The relationship between Hcand k33 .
and various material parameters provides a means ofMuch more recently Pal� y-Muhoray et al. [4] con-
estimating certain elastic constants. Here we considersidered the onset of purely mechanical instabilities in
four arrangements in which the smectic layers are eithernematic samples in an annulus, their analysis indicating
concentric cylinders or circular discs, and the appliedthat, even with no applied ® eld, an initial radial or
® eld is either radial, axial or azimuthal. (The number of
possible arrangements of this type is less than for
nematics due to the constraint that the angle between*Author for correspondence.
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526 P. J. Barratt and B. R. Du� y

the director and the layer normal is ® xed.) After outlining where
in §2 the continuum theory of Leslie et al. [7], we
consider in § 3 the linear stability of the initial alignments
with respect to time-dependent perturbations in the
director and velocity ® elds. We catalogue both the
critical radii for mechanical instabilities and the thresh-
old magnetic ® elds for FreÂ edericksz transitions in all
four cases (and we show agreement with the threshold
® eld obtained by Atkin and Stewart [6] for the case
they considered).

The continuum theory of Leslie et al. [7] for smectics
involves nine elastic constants, and our results involve
® ve of these constants; thus potentially these ® ve could
be determined by means of experimental arrangements
of the type considered herein.
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2. The continuum theory

Here we brie¯ y summarize the equations proposed by
Leslie et al. [7] to describe the isothermal behaviour
of incompressible smectic C liquid crystals. Their con-
tinuum model assumes that these materials are uniformly
layered structures with the average molecular orientation
(represented by the director n) having a uniform tilt
angle a with respect to the unit normal a to the layer.
Two orthonormal vectors are employed to describe this
layered structure; one is a and the other is the unit
orthogonal projection c of the director onto the smectic
planes, so that

n=a cos a+c sin a. (1)

Here v is the velocity, r is the constant density, eijk isThe relevant equations are then the constraints
the alternator and a superposed dot indicates a material
time derivative. The quantities p, c, t, k and b are
arbitrary functions of x and time t, and are e� ectively
Lagrange multipliers arising from the constraints (2).

a ¯a=c ¯c=1,

a ¯c=0,

curl a=0,

V ¯v=0,

(2) When a magnetic ® eld H is present the generalized body
forces Ga and Gc take the forms

Ga=xa(H ¯n)H cos a, Gc=xa(H¯n)H sin a,

and, in Cartesian tensor notation, the balance laws (7)

where xa denotes the anisotropic part of the magneticrvÇ i=Õ pÄ ,i+gÄ a
j aj,i+gÄ c

jcj,i+ tÄ ij,j , (3)
susceptibility (assumed constant). Finally Hm represents
the energy per unit volume due to the magnetic ® eld,

A qW

qai,jB ,j
Õ qW

qai
+gÄ a

i +Ga
i +eijkbk,j+cai+kci=0 and W is the bulk elastic energy per unit volume, taking

the form [7, 8]
(4)

2W =Ka
1(ai,i)

2+Kc
1 (ci,i)

2+Ka
2(ciai,jcj)

2+Kc
2ci,jci,j

and +Kc
3ci,jcjci,kck+2Ka

3ai,i(cjaj,kck)

+2Kc
4ci,jcjci,kak+2Kac

1 ci,i(cjaj,kck )+2Kac
2 ai,icj,j .

A qW

qci,jB ,j
Õ qW

qci
+gÄ c

i+Gc
i +kai+tci=0, (5)

(8)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



527Transitions in smectics in annuli

The theory thus provides 16 equations (2)± (5) to given in equation (9) the constraints (2) are satis® ed
identically, while the ® eld equations (3)± (5) reduce todetermine the sixteen variables ai , ci , vi , bi, p, c, k and t.
a pair of coupled ordinary di� erential equations to

3. Linear stability problems determine h(r) and v(r), namely
Suppose a sample of smectic liquid crystal is con-

® ned between two ® xed coaxial circular cylinders of d2h

dr2 +
1

r

dh

dr
+A

hI+kI

r2 Õ
2l 5s

Kc
2 B h+

(t5 Õ t1 )

Kc
2

dv

dr
=0

radii r1 and r2 (where r2>r1 ), so that the smectic
layers are either circular cylinders concentric with the

(12)boundaries or are discs perpendicular to the axis of the
boundaries. (Roughly speaking, these alignments corre- and
spond, respectively, to the so-called homogeneous align-
ment and bookshelf alignment occurring in a p̀lanar’

(m0+m2 Õ 2l 1+l 4 )Ad2v

dr2 +
1

r

dv

drBcell.) We consider the e� ect of applying a magnetic ® eld
H to such an arrangement, the applied ® eld being radial,
azimuthal or axial, and also everywhere perpendicular Õ 2s(t5 Õ t1 )Adh

dr
+

h

rB=0, (13)
to the initial alignments of a and c. Speci® cally, referred
to a polar coordinate system r, w, z, with associated

whereorthonormal basis er , e
w , ez , we shall be concerned with

the following initial static states and associated applied hI= (xaH2r2 sin2 a)/Kc
2 ,

magnetic ® elds:
kI= (Kc

2+2Kc
3+2Ka

2+2Ka
3 )/Kc

2. (14)

To make progress with these equations, we will now

I. a0=er , c0=e
w
, H=Hez ,

II. a0=er , c0=ez , H=H(r1/r)e
w ,

III. a0=ez , c0=er , H=H(r1 /r)e
w
,

IV. a0=ez , c0=e
w
, H=H(r1 /r)er ,

assume² that there is an èxchange of stabilities’ at any
transition, the implication being that critical values for
the onset of any instability correspond to s=0 (thus
precluding the possibility of an oscillatory instability,

H being a constant in each case (with the physical with s purely imaginary). Setting s=0 in equation (13)
dimensions of a magnetic ® eld). Each of these states is leads simply to v=0, while equation (12) becomes
an equilibrium solution of the equations given above.
[Of course, it may be easier experimentally to establish,

r2 d2h

dr2 +r
dh

dr
+bJh=0 (15)for example, a radial electric ® eld, rather than a radial

magnetic ® eld; however, since a linear stability analysis
for J=I, wherefor these two arrangements results in the same math-

ematical problem, we refer only to the case of a
bJ=hJ+kJ . (16)magnetic ® eld.]

We wish to determine the stability of these states to Equation (15) is to be solved subject to
small-amplitude perturbations cÄ and vÄ to c and v, it
being assumed that the positions of the smectic layers h=0 on r=r1 and on r=r2 . (17)
are una� ected (so that a is unchanged). We thus have

In cases II, III and IV, the analysis is somewhat
a=a0, c=c0+cÄ , v=vÄ , (9) similar; the corresponding perturbation ® elds are

with cÄ and vÄ small in magnitude. If strong anchoring cÄ II=cÄ III= (0, h(r), 0) est , cÄ IV= (h(r), 0, 0) est ,
and no-slip conditions hold on the bounding cylinders

(18)we also have

cÄ =0, vÄ =0 on r=r1 and on r=r2 . (10) and in each case if an exchange of stabilities is assumed
then h(r) satis® es equations (15) and (17), with J=II,Consider the basic state I. For this case it is appro-

priate to take the perturbations cÄ =cÄ I and vÄ =vÄ I to have
physical components of the form

cÄ I= (0, 0, h(r) ) est, vÄ I= (0, 0, v(r) ) est, (11) ² In analogous problems in nematics it can happen that the
corresponding equations uncouple, and one can then prove

it being assumed that any instability is spatially homo- that an exchange of stabilities will occur at a transition (see
geneous, so that these quantities depend on the radial [9], for example). For the smectic problems considered herein

such an uncoupling does not occur.coordinate r but not on w or z. Then with a, c and v as
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528 P. J. Barratt and B. R. Du� y

III or IV and with bJ given by (16), where to a transition. In cases II± IV, the di� erential equation
(15) reduces under (20) to (21), the constant pJ now
involving a contribution from H. It is found that the
threshold ® elds Hc are given by

bJ= (p/l)2 (24)

hII= (xaH2r2
1 sin2 a)/Kc

2,

hIII= (xaH2r2
1 sin2 a)/(Kc

2+Kc
3 ),

hIV= (xaH2r2
1 sin2 a)/(Kc

1+Kc
2),

kII=Õ (Kc
2+2Ka

3 )/Kc
2 ,

kIII= (Kc
1 Õ Kc

3 )/(Kc
2+Kc

3 ),

kIV= (Kc
3 Õ 2Kc

2 Õ Kc
1)/(Kc

1+Kc
2). H (19)

for J=II, III, IV, with bJ as in equations (16) and (19).
The result for case II agrees with that of Atkin and
Stewart [6], obtained via consideration of static energies
(and given in a di� erent notation in [6]).

Case I is slightly di� erent in that, although equationWe note that hII , hIII , hIV and the kJ are constants,
(15) for J=I reduces under (20) to an equation of thewhereas hI depends on r (unless H=0 ).
form (21), the coe� cient pI is not a constant, but depends
on s (for H Þ 0)Ð so the solution is not as for the other4. Mechanical instabilities
cases. Writing equation (15) in the formWe ® rst consider the possibility of a so-called mech-

anical instability, which corresponds to the physical
system ® nding a state of lower static energy by distorting d2h

dr2 +
1

r

dh

dr
+AkI+h

r2

d2B
h

r2 =0, (25)
away from an initial state even when H=0. In each of
the cases I± IV, the di� erential equation governing the

whereinstability (obtained from (15) by putting hJ=0 ) is
homogeneous in r, and may readily be solved by means d=r2 Õ r1 , h= (xaH2d2 sin2 a)/Kc

2 , (26)
of the change of variable

we proceed in two complementary ways. First we obtainr=r1 els , l= ln(r2 /r1). (20)
results based on a ǹarrow gap’ approximation, and

The problem then reduces to that of solving the secondly we consider an exact solution for the case kI < 0.
constant± coe� cient equation With a new variable x and a parameter d de® ned by

r=r1 (1+dx), d=d/r1 , (27)
d2h

ds2 +pJh=0, pJ= l2bJ (21)

the problem becomes that of solvingfor J=I, II, III or IV, subject to

h=0 on s=0 and on s=1; (22) d2h

dx2 +
d

1+dx

dh

dx
+C kId

2

(1+dx)2 +hD h=0 (28)
here bJ=kJ , since H=0. It is thus found that for given
values of r1 and the material parameters, there is a subject to the conditions
threshold outer radius r2=rc given by pJ=p2 beyond
which a mechanical instability will occur. Explicitly, the h=0 on x=0 and on x=1. (29)
threshold radii for the four cases are given by

For a narrow gap we take d%1 and seek a solution ofrc=r1 exp[p/(kJ)1/2], (23)
the form

for J=I, II, III or IV, provided, of course, that kJ is
h=h0 (x)+dh1 (x)+d2h2(x)+ ¼ ,positive.²

h=h0+dh1+d2h2+ ¼ . (30)5. FreÂ edericksz transitions

We now turn our attention to the occurrence of Substituting equation (30) into (28) and equating corres-
FreÂ edericksz transitions induced by the application of ponding powers of d we obtain a sequence of problems
magnetic ® elds. Of course, to ensure that the initial static of the form
states I± IV are realizable before the ® eld is applied (i.e.
with H=0 ) it is necessary to choose r2<rc ; then the d2hi

dx2 +h0hi=Ri (i=0, 1, 2, ¼ ). (31)application of an incrementally increasing H should lead

with² Although the nine elastic constants in W are known to
satisfy certain inequalities, the signs of the kJ are unknown at
present; if kJ<0 then there can be no mechanical instability. hi=0 on x=0 and on x=1, (32)
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529Transitions in smectics in annuli

where threshold ® elds are given by equations (24), (16) and
(19) for cases II, III and IV, and by equations (33) or
(35) with (14) and (26) for case I. The Hc depend onR0=0, R1=Õ h1h0 Õ

dh0

dx
,

® ve distinct combinations of the nine elastic constants,
so observation of critical phenomena in the experimental

R2=Õ h1h1 Õ h2h0 Õ
dh1

dx
+x

dh0

dx
Õ kIh0 , arrangements considered here should provide a means

of measuring these combinations, and hence of deducing
values of Kc

1 , Kc
2 , Kc

3 , Ka
2 and Ka

3 . For cases where aR3=Õ h1h2 Õ h2h1 Õ h3h0 Õ
dh2

dx
+x

dh1

dx
Õ x2 dh0

dx mechanical instability is possible, it is necessary in an
experiment to ensure that the outer radius r2 does notÕ kIh1+2kIxh0 , ¼ .
exceed the appropriate critical radius rc . Additionally,

A straightforward integration of these equations yields we note that the existence of a threshold rc means that a
the threshold ® eld FreÂ edericksz transition may be induced with a relatively

small ® eld H: if the system is already ǹear’ a mechanicalh=p2 Õ (kI+
1
4)d2+ (kI+

1
4)d

3+ ¼ . (33)
instability then only a small ® eld will be needed to p̀ush’

In the limit of a very narrow gap (d � 0 ), case I it into a transition. On the other hand, an approximation
becomes equivalent to the problem of a FreÂ edericksz to the set-up for a purely mechanical instability may be
transition in a smectic sample in h̀omogeneous align- achievable by means of an àlmost-cylindrical’ cone in
ment’ held between parallel plates, when a is normal to place of the outer cylinder; then the è� ective’ radius will
the plates, c0 is parallel to the plates, and the applied vary slowly along the axis of the system and at the point
® eld is parallel to the plates and normal to c0 . For where it takes the critical value, a change of orientation
this latter problem the threshold ® eld is given by pattern should be observable. Measurements of r2=rc
h=p2 ; equation (33) shows that the correction to this at this point will provide an estimate of kJ via
(associated with the curvature of the annular geometry) equation (23).
comes in only at O(d2), and involves only the elastic When the applied ® eld is azimuthal, order-of-
constants in kI . magnitude arguments for nematics (see [9, 5]) indicate

Lastly we consider case I when kI < 0. Equation (25) that typically a line current of about 20 A would be
has the general solution needed to generate the critical ® eld. If the elastic con-

stants for smectics are of the same order of magnitudeh(r)=AJq(h1/2r/d)+BYq (h1/2r/d), (34)
as those for nematics then the above analysis shows that

where q= (Õ kI)
1/2, and Jq and Yq denote Bessel functions. a comparable value would be required for the smectic

Application of the boundary conditions (17) yields the case; with a radial ® eld, a similar critical value would
relationship be needed. In the case of an axial ® eld Strigazzi [10]

estimates that for a nematic c̀ell’ with r1=1 mm andJq(h1/2r1/d)Yq (h1/2r2 /d) Õ Jq (h1/2r2 /d)Yq (h1/2r1 /d)=0
d=20 mm, the critical ® eld Hc will typically be about

(35) 2 Ö 105 A mÕ 1; one might expect a similar ® eld for a
smectic sample in such a cell. For larger values of d/r1to determine h. This is rather cumbersome, but in the
this critical value will be smaller.special event that kI=Õ 1

4 the solution (34) simpli® es to

h=
1

r1/2GA1 cosCh1/2A
r Õ r1
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